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The flow of a continuously stratified fluid into a contraction is examined, under
the assumptions that the dynamic pressure and the density gradient are constant
upstream (Long’s model). It is shown that a solution to the equations exists if and
only if the strength of the contraction does not exceed a certain critical value
which depends on the internal Froude number. For the flow of a stratified fluid
over a finite barrier in a channel, it is further shown that, if the barrier height
exceeds this same critical value, lee-wave amplitudes increase without bound as
the length of the barrier increases. The breakdown of the model, as implied by
these arbitrarily large amplitudes, is discussed. The criterion is compared with
available experimental results for both geometries.

1. Introduction

A basic problem in geophysical luid mechanics is the flow of a density-stratified
fluid over an obstacle. One of the most confusing aspects of this problem has been
the question of the blocking of the flow by the obstacle, i.e. whether a given
obstacle must fundamentally alter the flow far upstream of itself. The same
question occurs in problems in rotating flows and water waves. Blocking, when it
exists, invalidates those methods of analysis which prescribe the flow far up-
stream without regard to the obstacle. There is considerable interest, therefore,
in determining the conditions under which blocking occurs.

Trustrum (1964) performed a linearized analysis for the transient flow created
by a variety of small disturbances, both in stratified and in rotating flows. For a
disturbance that was effectively a weak contraction of a rotating flow, she
concluded that the upstream conditions depend on the means of setting up the
steady motion as well as on the geometry of the problem. Benjamin (1970) carried
a small perturbation analysis to the second order, and claimed that some up-
stream influence always accompanies lee-waves. He did not determine the
relative importance of this upstream influence, or whether its omission seriously
alters the solution.}

Using the other useful analytical tool for continuous stratifications, Long
(1953 a, 1955) cast the steady equations of motion of an inviseid, incompressible
fluid in a certain form (which is essentially Crocco’s relationship) without regard
to the size of the obstacle. Then he discovered particular boundary conditions

t Note added in proof. The editor has notified the author of recent work (in press) by
Dr Michael E. McIntyre, which apparently does answer these questions. Under conditions

for which some (perhaps negligible) upstream influence is necessary, Long’s model must be
considered an approximation, and the results of the present paper interpreted accordingly.
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upstream for which the equations reduce to the Helmholtz equation with inhomo-
geneous (but linear) boundary conditions. The linearity of the equations does not
depend on the obstacle’s being small, so that flow around physically important
obstacles of finite size can be considered. In addition, Long’s model possesses a
certain generality. It has been shown that the equations also describe the flow
around a symmetrical obstacle moving along the axis of a rotating fluid (Long
1953b) and the meanderings of the zonal winds under the 4-plane approximation
(Ball 1959). Thus, the results which will be obtained here for stratified fluids can
be extended to cover these other areas as well.

Unfortunately, the range of application of Long’s model is unknown. The
results of Trustrum and of Benjamin indicate that the boundary conditions
upstream of an obstacle may depend on the obstacle itself. Thus, for a given
obstacle, to specify particular boundary conditions upstream may be to over-
specify the problem, and no solution may exist, or the solution may not be
physically realizable.

In this paper a criterion is obtained which delimits the range of application of
Long’s model. Violation of the criterion implies that at least one of the assump-
tions of Long’s model fails. When the model fails, the flow in question may not be
steady, viscous effects may influence the whole flow field, or the nature of the
flow postulated upstream may not be possible. Failure of Long’s model is not
implied by the presence of some (perhaps negligible) upstream influence of the
obstacle, so this eriterion is distinct from that obtained by Benjamin (1970).

In §2 we examine the steady two-dimensional flow of an inviscid stratified fluid
into an arbitrary contraction. The method of constructing solutions developed by
Drazin & Moore (1967) yields a simple criterion (which involves the internal
Froude number and the strength of the contraction) beyond which the whole
model breaks down. The problem is analyzed in detail for abrupt contractions,
and it is shown that the criterion is both necessary and sufficient for the
existence of solutions to Long’s model.

The flow of a stratified fluid past an obstacle of finite length is examined in §3.
The key to the problem lies in the same construction technique. Solutions
apparently exist for almost every obstacle of finite length. However, if the same
criterion (which now depends on the obstacle height, rather than the contraction
strength) is violated, the resulting flow pattern is so violent that the validity of
the model is doubtful. Approximate lee-wave amplitudes for the flow past
rectangular obstacles are obtained and discussed.

In §4 this criterion is compared with available experimental results for both
geometries. Whenever the criterion is violated in these experiments, the flow
which results is found to be blocked in the sense that stagnant regions upstream
of the obstacle exert a radical influence on the nature of the entire flow field.

2. Flow into contractions
2.1. General derivation

We consider first the steady two-dimensional flow of an inviscid incompressible
stratified fluid into an arbitrary contraction. The equations of motion can be
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reduced to a single non-linear partial differential equation for the stream
function, ¥, of the form (Dubreil-Jacotin 1935)

pvzw+jT’;{%|V¢|2+gy} - ji;,’ (2.1)

where p is the density, p is the pressure and

H()) = p+pgy +3p| Vi |2
One makes all lengths dimensionless using the characteristic length H /7, where
H is the channel depth, and defines y,(x, ¥) to be the dimensionless elevation that

y=m7
Y=1u(x)
- T Y=t
-
-
- %\ y=iy
y=0 K

FiGure 1. Typical geometry for the flow into a contraction.

the streamline passing through the point (z,y) attains far upstream. Long
(1953a) showed that if the flow upstream satisfies the two conditions

P(Yo) U%(y,) = const. > 0} (2.2)

and dp/dy, = const. < 0 .
then (2.1) becomes V&3 + k%6 = 0, (2.3a)
where 8(x, y) = yolx,y)—y
and B2 = —9—(‘1%?2’;)[1 .
The boundary conditions for ¢ are (see figure 1)

>0 as z—> —o0;

¢ bounded as z—> +00;

& = —b(x) along the bottom wall, y = b(z);

& =m—#(x) alongthe top wall, y = i(x); (2.35)

where bx)—>0, tx)-»>m as x> —o0,
b(x)>pu,, tx)—>p, as x—> +o0.

To assure uniqueness, it is necessary to exclude values of & for which either
k = m or k(uy— py)/m = m for any integer m. These values denote resonant flow
situations, in which one would expect the assumptions of the model to fail.

The assumptions (2.2) reduce the non-linear equations of motion to a linear
boundary-value problem, regardless of the obstacle size. Drazin & Moore (1967)
further noted that, since the governing equation is the Helmholtz equation, one
acquires the use of the powerful tools of diffraction theory. In particular, the

II1-2
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stratified flow problem can be replaced by an equivalent acoustic problem. Thus,
one considers the superposition of the effects of (a) a set of sources, distributed
continuously along the walls of the contraction, and (b) a source at x = + 0. The
sources in the contraction continuously emit waves that travel both upstream and
downstream, and one must choose the source at = +co in such a way as to
annihilate any disturbance upstream. The upstream disturbance from the
sources in the contraction can be obtained simply by separating variables in
(2.3). Solutions to (2.3) are X(x) sin ny, where X (z) satisfies

X"(x) + (k2 —n?) X (z) = 0.

Thus, undamped waves can exist upstream for £ > 1. The composite of all the
waves which travel upstream of the contraction is of the form
d= UZC] A, expli(—n?)iz]sinny+ % A4, exp[(n?—k?)}z]sinny,
n=1 n=[kl+1
where [k] denotes the greatest integer less than or equal to k.

If the contraction is symmetric about the line y = 17 (so that b(z) = 7 —t(x)
in figure 1), the solution also must be symmetric, and no odd wave modes enter
into the solution. For this exceptional geometry, all the statements of this section
hold if one replaces (k) by (3k). Thus, for a symmetric contraction, undamped
waves exist upstream for k > 2.

We now add to this problem the other wave generator at = + o0, whose
waves travel upstream. This additional wave generator is to be adjusted to send
sinusoidal waves to z = — oo which exactly cancel the existing waves

k]
> A, exp [1(k%—n2)tz]sin ny,
n=1

so that the boundary condition upstream is satisfied. Then the sum of all the
waves emitted by the walls, plus those generated at xz = + o0, satisfies the
boundary-value problem (2.3). Drazin & Moore (1967) used this equivalent
formulation to construct solutions for the flow over obstacles of finite length.
Grimshaw (1968) later proved the uniqueness of these solutions, provided only
that the obstacle satisfies a certain convexity condition and has finite length.
Let us apply this equivalent formulation of the boundary-value problem (2.3)
to the contraction shown in figure 1. We define w, the asymptotic contraction
ratio, by
w = (3= fig) . (2.4)
We now show that the model breaks down irreparably if w is too small. The wave
generator at x = + 00 can only emit sinusoidal waves of the form

[kw]

Z Byexp[i(k®— (nw)*)2a] sin {(nw) (y — 1)}

In this construction technique, the amplitudes, B,,, of these [kw] wave modes are
to be adjusted to cancel the [k] existing wave modes upstream. If [k] > 1, how-
ever, there exists a range of contraction ratios such that [k] > [kw]. Obviously,



A limstation on Long’s model 165

no set of [kw] wave amplitudes can be determined which cancel [k] existing

waves if [k] > [kw]. Thus, [k] = [kw] (2.5a)

emerges as a requirement for the existence of solutions to the boundary-value
problem (2.3) for any asymmetric contraction, regardless of its local shape.
Similarly. [45] = [3hw] (2.50)

must be satisfied for any symmetric contraction if Long’s model is to deseribe the
flow into that contraction.

2.2. Abrupt contractions

We can make these arguments precise if we restrict our attention to abrupt
contractions, of the type shown in figure 2. The advantage of this simple geo-
metry is that separation of variables yields the form of the solution for < 0 and

y
L V=2
=i
—
y=0 x=0 *

F1cUrE 2. An abrupt contraction.

for > 0, which can then be matched at z = 0 to obtain the solution to the
boundary-value problem (2.3). Thus, for z < 0,

d= 3 A—;’exp[(nz—kz)%x]sinny, (2.6a)
n=[k]+1 T

where {4,} is a sequence of real, undetermined constants, and
> A/n < co.F

n={k)+1
One defines y and 7 by

—py = ysink(u,—7), 7T—po =ysink(p,—7).
Then, for z > 0,

oz, y) = [r%ull [g—i sin {(lc2 - (5})2)% x} +g—; cos {(lc2 - (5})2)% m}] sin {1—2 (y —M)}

+ § %exp[—((5})2—%)%:0]sin[Z—v(y—/Ll)}+ysink(y—g7). (2.65)

r=[kw]+1

+ The normalization of the Fourier coefficients shown here was suggested by Professor
H. B. Keller. Tt makes the infinite matrix that will appear in (2.7) symmetric and is crucial
for this method of proof.
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d(x, y) and 2d(z, y)/6x must be continuous at x = 0. Carrying out this matching,
and eliminating {67, {@,}{3,)+1, one obtains the following infinite set of linear
algebraic equations for {a, i) and {4, }%11:

Fwl  (am)t . .
) nz(_ (”)Lw)2 {sin mu, + (— )™+ sinmu,}a,

2 o (mujh (1= (kJn)?)
—;T(w)zn:%]H ME— 2

x [W(m)— W(n)] — [sin mu, sin ngu, + sin mp, sin nu, ] [ X (m)— X(n)1} 4,

{[sinx mu, sin npe, + sin mp, sin g,

- (g + 7_27 (w)2 (m? — k2) {[sin2 mpu, +sin®mpu,] Y (m)

— 2ginmu, sin m,uZZ(m)}) A,

k? 1 . .
= A mE =) {yl COS Mty + (7 — i,) COS Myhy} — 3 {sin mpty —sin iy}

km?

+ (E ) s oo {(m — py) (sinmpe, — cos kwm sin mpu,)
— Jy(SIn M, — sin mu, cos kwr)}, (2.7)
where d(m,r) = (12— (mw)?)=, s(r) = (r2 — (kw)?)~3,

Wm)=m2 ¥ dim,r)s(r),
r=[kw]l+1

X (m) = m? % (— 1)y d(m,r)s(r),
r={kw]+1

Ym)= X rd(m,r)s(r),
r=[kwl+1

Zm)= X (—1yrid¥(m,r)s(r).
r=[kw]+1
The assumptions (2.2) reduced the non-linear equations of motion to the
Helmholz equation with inhomogeneous boundary conditions (2.3). This linear
differential equation has now been replaced by an infinite set of linear algebraic
equations (2.7). If (2.7) has a solution for which
© 2
—2 <0
n=[k]+1 T
then (2.3) has a bounded solution, and conversely.
Before examining the characteristics of (2.7) we note one important speciali-
zation of it. In the case of a symmetric contraction, in which

My =T = [y,

onenotes that the right-hand side of every equation with odd () in (2.7) vanishes.
Furthermore, every element of the matrix on the left-hand side for which (m +n)
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is odd vanishes. It follows that (2.7) can be separated into two sets of linear
algebraic equations, a homogeneous set for the odd Fourier coeflicients, {a,,_,}
and {4,, ,}, and an inhomogeneous set for the even coefficients, {a,,} and {4,,}.
Hence, if the matrices for each set have well-defined inverses, then the odd
coefficients must all vanish, so that the solution to (2.3) is described completely
by the even coefficients. Thus, the flow itself must also be symmetric, as men-
tioned in §2.1.
The set of equations (2.7) can be written in the following matrix form:

Ev=f (2.7a)

where f = {f,.};m—1 denotes an infinite sequence, the mth element of which is the
right-hand side of the mth equation of (2.7), and v is an infinite sequence with

{an for 1< n< [kw],

v, =

At for n > [kw),

and E = ((E,,,)), in which E,, is the coefficient of v,, in the mth equation of (2.7).
The behaviour of f and £ as functions of (m,n) is needed to determine the

existence of solutions to (2.7). For any given combination of (k, u,, t,), as m — o,

fo = O(mH). (2.8)

We refer to the elements of the matrix in (2.7) which involve Y (m) and Z(m)
as ‘dominant elements’. For any n < [kw], we also call the elements for which
|n—mw| is a minimum a ‘dominant element’. One can show that each of these
elements is bounded. If ¢(m, m) denotes the dominant element in the mth row,

then for m > [k]+1,
-0 < e(m,m) < —%m. (2.9)

All the other elements of the matrix are called ‘non-dominant elements’, and are
denoted by e(m,n). If n < [kw], it follows that

e(m,n) = O(m=¥) as m-—>co.
If n > [kw],

1
nm): . m
e(m,n)=0(w(b—)—ln—) m+n, as n->00 Oras m-—>w.
n

2 _p2

Thus, as (m 4+ n) increases, every element in any row or column tends to zero,
except those along one diagonal, where the elementsremain finite. The significance
of the criterion (2.5) is that this dominant diagonal become the centre diagonal of
the matrix for [k] = [kw]. It is shown in appendix A that this criterion is both
necessary and sufficient for the existence of a bounded inverse to the matrix in
(2.7). That result may be stated as follows:

For an asymmetric, abrupt contraction, a bounded solution to (2.3) exists

iquely if
ey ® (k] = [kw]. (2.10a)

M4

If [k] > [kw], no bounded solution to (2.3) exists unless the ([kw]+1)th, ..
([k])th equations of (2.7) have vanishing right-hand sides.
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For a symmetric, abrupt contraction, a bounded solution to (2.3) exists
uniquely if [3%] = [4kw]. (2.105)

If [$k] > [$kw], no bounded solution to (2.3) exists unless the ([$kw]+ 1)th, ...,
([3k])th equations corresponding to (2.7) for symmetric contractions have
vanishing right-hand sides. The reader is referred to the appendix for details.

The range of application of Long’s model for contractions can thus be ex-
plicitly defined. The model is inappropriate unless (2.5) is satisfied. This is con-
firmed experimentally in §4.

3. Flow past obstacles

The strength of the criterion (2.5) suggests that it might have some counter-
part for the flow over obstacles of finite length. If one seeks an existence criterion
corresponding to (2.5), then it apparently has no counterpart. In terms of the
construction technigue used in §2.1, such an existence criterion would mean that,
within some range of the parameters, an obstacle of finite length could reflect
completely a wave emitted from the wave generator at = +co0. Drazin &
Moore (1967) conjectured that any finite obstacle that allowed some gap above it
must transmit some energy from the wave emitted at x = + co. Grimshaw (1968)
commented that, since the problem is linear, a proof of uniqueness suggests
strongly that existence can also be demonstrated.

But, if solutions always exist, how could a criterion like (2.5) affect the problem ?
It is not difficult to show that the criterion must significantly affect the trans-
mission coefficient of the obstacle, and that it must become more important for
longer obstacles. In the terminology of §2.1, [k] sinusoidal wave modes are
generated downstream, which must betransmitted pastthe obstacle. If [k] > [kw],
where w now denotes the ratio of the fluid depth over the obstacle to that up-
stream, an insufficient number of sinusoidal wave modes exist over the obstacle
to carry all the wave energy generated at « = + co. It follows that part of this
energy must be transmitted by the exponential modes (see figure 3)

n=[0§:z:v]+1D" exp [((%)2 — kz)é (x— L)] sin {% (y— h)} .

If the obstacle is long, only a small fraction of the incident energy can be trans-
mitted by these exponential modes. In order to cancel the waves at x = — o0,
therefore, the energy input at x = + co must be tremendous. Hence, if [£] > [kw]
and the obstacle is long, a violent wave pattern in the lee of the obstacle is
required if no waves are to exist upstream.

As in §2, the argument can be made more precise by examining a particular
class of obstacles. The flow past long rectangular barriers, like the one shown in
figure 3, can be analyzed by the same matching techniques used above. The
algebra is twice as long, and is relegated to appendix B. Instead of the infinite
matrix obtained in (2.7), one obtains a doubly infinite matrix (Z,,,), where
—oo < m,n < oo. The importance of the criterion (2.5) is that this matrix is
well behaved if [k] = [kw], but becomes more nearly singular as L increases if
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(k] > [kw]. If {C,/n}}¥1, denote the amplitudes of the different lee-wave modes,
the following approximate result is obtained in appendix B:

if [k]=[kw] C,=0() as L->o0;
if (k] > [kw] ord(C,) >L as L-—o0,
ie. C,JL->o as L-—oo. (3.1)

Thus, if (2.5) is violated for long obstacles (large L), the solution to Long’s model
contains a violent pattern of lee-waves whose amplitudes grow without bound as
L increases. In light of such an unrealistic result, one must question the validity

Y=

?
| y=h |

7=0 x=0 x=L

v
=

Ficure 3. Rectangular obstacle in a channel.

of the assumptions of the model. A comprehensive critique of these assumptions is
beyond the scope of this paper. We examine briefly the assumption of an inviscid
fluid, whose breakdown can be verified directly from (3.1).

An inviscid model neglects any effects of viscous forces in determining the flow,
an assumption whose validity can be tested a posteriort by determining whether
the inviscid solution approximately satisfies the viscous equations in the domain.
When the inviscid solution contains violent wave-patterns, as it does for large L
when (2.5) is violated, the validity of this assumption is doubtful. In fact, one can
use (3.1) to estimate the obstacle length required to invalidate the inviscid
approximation. With constant viscosity, u, the equations of motion yield an
energy equation

(DIDt){p+pgy +3p|VY|% = uV§ . V(VEY), (3.20)
and a vorticity equation, corresponding to (2.1),
D dp
2w 9P 2 = uV2V2
i PP+ ST+ a0)| = Vv, (3.20)
where (D|Dt){} =u.V{}.
Far enough downstream of the obstacle, the inviscid solution is given by
Kl
Yo=Y+ 3 n—;’sin{(kz—nz)% (x—=,)}sinny, (3.3)
n=1
Yo
where =1 Undy.

The {C,} depend on L, as shown in (3.1). One substitutes (3.3), with (3.1), into



170 H. Segur

(3.2) to determine the minimum L beyond which viscous effects in the lee of the
barrier invalidate the use of an inviscid model. Using the definitions

Re = pUH|[npu, pf=—(1/p)dp/dy,,

one obtains the following results:

(@) If[k] = [kw], wave amplitudes are hounded as L —o0. An inviscid analysis
yields a valid approximation to the viscous solution for large Re, except in such
singular regions as boundary layers and closed rotors.

(b) If [k] > [kw], viscous effects are important everywhere downstream of the
barrier unless either

(i) AL <1 and L =o(k2Ret), }

. (3.4)
or (i) AL>1 but L =o(kf2Rel).

This establishes (2.5) as a necessary criterion for the validity of Long’s inviscid
model for the flow of a real fluid over long barriers, where ‘long’ is defined by
(3.4). We note that this model might fail for other reasons (gravitational or shear
instability, for example), and that some constraint other than (2.5) actually
might be more stringent. Thus, the criterion (2.5) is not sufficient to ensure the
validity of the model, but it is necessary.

4., Comparison with experimental results
4.1. Contractions

The only experimental results on stratified flow into a contraction with which
the author is familiar were conducted by Debler (1959). In those experiments the
contraction was a line sink in the corner of a channel of finite height, so that
w = 0. Fortunately, the contraction was also one-sided. Equation (2.10) states
that a solution of (2.3) exists if and only if & < 1. Experimentally, Debler found
that the sink drew fluid from the whole channel for £ < 1-14 (¥ > 0-28 in his
notation, since his F = 1/kx), and Yih (1965) showed that Long’s model ac-
curately described the flow. For £ > 1-14, an essentially stagnant layer filled the
upper part of Debler’s channel, so that (2.2) was violated. Moreover, Debler’s
method of velocity measurement suggests that the effects of viscous boundary
layers might account for the difference between the theoretical (k < 1) and the
experimental (k < 1-14) criteria. Thus, for the two-dimensional sink flow studied
by Debler, the non-existence of solutions to Long’s model implies a strong form of
blocking.

4.2. Barriers

Laboratory experiments on the channel flow of a stratified fluid at relatively high
Reynolds numbers over a barrier have been conducted by Long (1955) and by
Davis (1969). Unfortunately, Davis used rather short, abrupt barriers. Using the
definitions given in § 3, he used barriers either with L = 2 or with L = 0, in a flow
field with Re ranging from 1300 to 5000, and f~! ranging from 30 to 70. Thus, his
barriers were short enough to satisfy (3.4), so that the criterion (2.5) does not
necessarily apply. It is worth mentioning that, with these abrupt barriers, Davis



A limitation on Long’s model 171

noticed that the downstream flow field was still not described by solutions to
Long’s model, because of large-scale separation behind the barrier crest.

Long conducted seven experiments (his figures 6-12) for which [%] = [kw].
Computed solutions to the inviscid equations closely approximated the observed
flow fields for these experiments. Although he observed blocked regions in some
of the experiments, the blocking apparently was confined to a narrow layer ahead
of the obstacle, with little effect outside that region. In two other experiments
(his figures 13--14), for which he believed that no solution to Long’s model existed,
he demonstrated that alarge enough barrier could create flow conditions upstream
quite different from those described by (2.2). [k] > [kw] for each of these experi-
ments, although the barrier was long in the sense of (3.4) only for the second
experiment.

Thus, the limited experimental evidence available is consistent with the result
given above, that Long’s model cannot describe the flow of a stratified fluid over
a long barrier unless (2.5) is satisfied. In addition, it is consistent with the
suggestion that Long’s model might break down for reasons other than those
implied by (2.5).
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Appendix A. An existence criterion for contractions

We seek to prove the existence criterion (2.10) in this appendix. We shall
prove (2.10) for any contraction if &k < 1. If & > 1, we shall prove (2.10) for any
one-sided contraction or for any symmetric contraction.

Existence

If (2.10@) is satisfied, then [k] = [kw] and all the dominant elements of the
matrix in (2.7) lie along its main diagonal. We consider as a prototype the
case [k] = [kw] = 0. The body of the proof is identical for any other value of
[k] (= [kw]), and we shall indicate below the modifications necessary to generalize
the proof.

A second restriction which greatly simplifies the proof is to consider only
one-sided contractions. For definiteness, we take

p=0, m—p,=%0. (A1)
Then, corresponding to (2.9), the dominant elements of the matrix, which are also
the diagonal elements, obey
— 0 < ¢(m,m) < — (37 + 2mwa(m)), (A2)
where 0 < a(m) < 4/n%.
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The non-dominant elements, which lie off the main diagonal, are given approxi-

mately by 2 ' (nm)t . m
e(m,n) = o sinmpy sinnpy s In P

It follows that the matrix in (2.7) can be written as

E=—A+B, (A 3)
where A, =—emm) if m=nmn,
=0 if m$n;
L2, . (nm) . m
B, = -~ sinmy, sin nﬂzmln if m=*n,
-0 if m=n.
Certainly 41 exists. In fact,
1
V) = — i = Adg
(A, cm.m) if m=nmn, (A4)
=0 if m=+n

Let |BA-Y| denote the norm of the matrix BA~1. Then |BA~!| < 1 implies that
E-1 exists and that E—1is given by the Neumann series:t

E'= —AY1+BA*+BA'BA-1+...). (A5)
But |BAY| < |B|.|47Y,
and, from (A 2), |47 < 2/m.

Therefore, if | B| < $n, then B! exists. Now the norm of B is given by

|B| = max {

(22, . (nm)} m
mzz}l ("§1 S mpl, Sinnpy ~ 5 — In (;) xn) x,,
m+n

5 wmwm} (A6)
m=1

for all {,,} €1?. Certainly

= (22 (nm)
E, (Zaneiatn () =)

m=1
m+n

|B| < ma,x{
{am}

S sara). (AT)
m=1

We refer to a theorem by Hardy, Littlewood & Polya, in the form due to
Schur:

Suppose that M (x,y) has the following properties :

(1) M is non-negative, and homogeneous of degree —1;

@ [ M vetae= [T a0 gty =

(3) M(z, 1)zt is a strictly decreasing function of x, and M(1,y)y=* of y.
Then

[ea] @D

> X M(m,n)a,b, < 'y( §, a?,,)%( % bi)% unless {a,} or {b,} is null. (A8)
m=1 n=1

m=1n=1

T For the proof see Friedman (1956, p. 34).
I Hardy, Littlewood & Polya (1952, p. 227).
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One verifies by inspection that

2 (xy)t . =
B(x,y) = 7_rx(2 z)?ﬂ ln;

satisfies the requirements of the theorem. Thus, 7 is defined by

= ?—f _1—— Inzdx.

mJo 22—1
The value of the definite integral is }72. The theorem (A 8) then states that
|B| < %, (A9)

from which it follows that E-! exists. Therefore a solution to (2.7) exists, it is
unique and, from (2.8), it is within /2. This proves the existence part of (2.10a)
for one-sided contractions and for [k] = 0.

The restriction [k] == 0 can be removed with some juggling, the purpose of
which is to put the matrix ¥ into a form such that the same proof applies for any
finite [k]. If [k] is finite, the convergence of {v,} is not affected if one redefines its
first [k] elements such that
e(n,n)
(—3m)

n = Qn (n < [kw]), (A10)
where e(n,n) is the dominant element corresponding to v,,. One can then redefine
the elements of the first [kw] columns of ¥ in the following fashion:

_(nm)t —37

e(m3 'ﬂ) = ne— (m’LU)2 (’LU) {( - ]_)n+1 sin mﬂz} r

Then, for all the dominant elements of ¥,
e(m,m) < —3m. (A11)

Furthermore, the sequence e(m,n) in any column of E for which »n < [kw] is
majorized by some sequence that satisfies (A 3), so that (A 9) still holds. Thus £
exists for any one-sided contraction.

One applies the same reasoning to the equations for a symmetric contraction to
prove that, if (2.10b) is satisfied, then the matrices in the two sets of equations for
the odd and even Fourier coefficients each have well-behaved inverses. Hence,
all the odd wave modes vanish in a symmetric contraction, as advertised.
Alternatively, if one replaces a symmetric contraction with the juxtaposition of
two opposed one-sided contractions (replacing & with k), then the existence part
of (2.10b) is established by inspection, giving (2.10a).

Further, one can juxtapose one-sided contractions to create any contraction,
if k < 1. The solution being composed entirely of exponential modes, it follows
that the flow into any contraction, symmetric or not, must include one horizontal
streamline. The flow on either side of this streamline may be regarded as the flow
into a one-sided contraction (with k2 properly adjusted), so that the existence
part of (2.10) is established for any contraction if £ < 1.

To prove that (2.10) is a sufficient condition for the existence of solutionsin any
contraction is rather complicated. The upper bound (A 9) was quite close, and
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relied heavily on the fact that the symmetric matrix B could be made non-
negative without increasing its norm too much. In the general case, in which
non-dominant elements are given by

nn)

_ . : . (
B,,, = {sin mu sin nu, + sin mu, sin nj,} 2__ .2
m=+n me=n

In

g (A12)
n
the same procedure does not yield a close enough bound to prove (2.10). This

difficulty appears to be purely an algebraic one, and no attempt is made here to
overcome it.

Non-existence

The proof of the non-existence part of (2.10) depends on the Fredholm alter-
native property of any linear operation E on a Hilbert space:7
A given linear, non-homogeneous equation,

Ex =09, (A 13a)
has a solution only if every non-trivial solution to the homogeneous adjoint equation,
E*y =0, (A 13b)
satisfies b,y) =0, (A 13¢)
where b,y = X by,
n=1

If E is a real matrix, then E* is simply the transpose of that matrix.

Let us impose restrictions on the range of the parameters again, which we will
remove after completing the proof. We consider as a prototype the asymmetric
case in which

{k1=1, [kw]=0 and g, =0. (A 14)
The transpose E* of the matrix E of (2.7) then is given by

By, —Ay By,
E* = B13 Byy —Ags
By, By, Bj,

where the 4,,, and B, are given by (A 2) and (A 3). Let the solution (if any) to
(A 13b) be denoted by {y,}n-1. Then the homogeneous adjoint equation corre-
sponding to (2.7), when every term involving y, is transferred to the right-hand
side, takes the form

— 4, B, By ... Ya By,
By —Ag By M us) = - By ). (A 15)
By,

By, By —44 .. Ya

But the matrix in (A 15) is exactly the kind that was just shown to have a well-
behaved inverse. Therefore, the homogeneous adjoint equation has a non-trivial

t Friedman (1956, p. 46).
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solution. From (A 3), {B,,}r-.€? so {y,}i-1€l? as well. Equation (A 13¢) can
be written as

flyl == n%::? f'nyn’ (A 16)

where {f,} is defined by (2.7a). Observe that

:i:fn

< oo; hence 3 f,vy,
n=2

is ordinarily too small to satisfy (A 16). I't is possible that (A 16) can be satisfied if
Jf1 = 0. A symmetric contraction yields f; = 0, but in that case (2.7) is degenerate.
For an asymmetric contraction, f; = 0 only for a discrete set of combinations of
(k, 1, o). (For example, in the asymmetric prototype, u; = 0, [k] = 1, there
exist at most two non-trivial values of u, such that f; = 0 in (2.7).) With the
possible exception of this discrete set of combinations of (k, %,, #t,) (A 16) cannot
be satisfied, so that (2.7) has no solution.

The restrictions placed on the parameters are easily removed. For some other
combination of [k] and [kw], the right-hand side of (A 15) would be composed of a
linear combination of terms like — y,{B, 3%y, with [kw] < n < [k]. The rest of
the proof has similar changes.

The restriction to one-sided contractions can be removed to the extent that it
was removed in the proof of the first part, since this proof depends on the results
of that part. Thus, for £ < 1, (2.10) holds for any contraction. For arbitrary £,
(2.10) is established for one-sided contractions and for symmetric contractions.

It is worth noting explicitly that, as k increases, the value of w below which no
solution exists approaches unity, so that Long’s model yields no solution for any
particular contraction if k is large enough. This completes the proof of (2.10).

Appendix B. The inviscid flow past rectangular obstacles

The solution to the boundary-value problem corresponding to (2.3) for
rectangular obstacles (see figure 3) can be determined by separation of variables,
as was the flow field in §2. Thus,

0= ;: A;‘, exp [(n2— k)t z]sinny (x < 0),

n=N+11
E [Dysin (= (njw})z B, sin (k2— (nfw))t (z—L)| . n
221 !n&sm(k2 (njw)?) BL  nisin(k2— (nfw)BE L }sml—v(y-h)

2 [Dpsinh ((njw)*—k?)tx B, sinh ((njw)2—k3)t@-L) . n
{nisinh((n/w —k%EL "~ nbsinh ((njw)2—k2)E L }Smt_v(y—h)

+ysink(y—%) (0<x< L),

+

n=R+1

N Bn 5 211 O‘n : 2 2\% i
0= 3 ——;cos(k —n?2) (x—L)——é sin (k% —n?)2 (x — L)} sin ny
n=1 N n

Lo %exp[_(nz_kz)%(x—L)]smny @>L), (B1)

n=N-+1
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where w = (m—h)/m, N = [k], R = [kw], and L is restricted by

sin (k2— (njw)?)*L = 0 forall = < R.

Upon elimination of {B, ¥, {D,}¥ and {E,}* one is left with an infinite set of
linear algebraic equations of the following form:+

4, f

a3 4
,,,,,,,,,,, Moy My Ny Ny Ny - A ik
o Ay My Ny Ny Ny G =1As}) @2
Nog Ny M21§Mzz Mo B, fa
Nz Ny, MaléMaz My B, [
in which
214
M,, = 72—78,%+ wimn)t|1— (%) " sin (nh) sin (mh)
X § r2d(m,r)d(n, r)s(r) coth (s—(r) L), (B 2b)
r=1
E\2E . .
N,, = —wmn)t|{1— (ﬁ) sin (nh)sin (mh)

X % r2d(m,r)d(n,r)s(r)cosech (s~(r) L), (B2¢)
r=1

d, s are defined by (2.7), and d,,, is the Kronecker delta. The {f, } are identical with
those of (2.7) for u, =k, p, = 7. Significantly, they are independent of L.
Following the pattern of § 2, one can show that this matrix has dominant diagonal
elements. In fact, M,,, shows the same dependence on (m,n) as did the matrix
elements in §2. For large m or =,

2 . . 5 .
M, = = sinnhsinmh (Zm): mE i m * n,
T mE—n? m
M, = {7+ 2nwa(n),
where 0 < a(n) < 4/n2.

Similarly, one establishes the following bounds on N,,, for large m or n:

| Npn| < 2wtanh—? (exp [—g{([kw] +1)2— (kw)z}%]) ———I mgim;; 7 if m =+ n;
| N, < 3—727 tanh—1 (exp [—g{([kw] +1)2— (kw)z}%]) ﬁ .
(B3)

The magnitude of N, for m,n < kis quite important. If [k] = 1, either [kw] =1

1 We shall consider [%] = 1 as a prototype in all of the subsequent development.
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or [kw] = 0. If [kw] = 0, one can show that the first term in the infinite sum in
(B 2¢) dominates, so that

N, = (12::“’))2 (S“]; h)2 (llf (70;)2)é / sinh (i«{l - (kw)2}%). (B 4a)

If [kw] = 1, the first term involves trigonometric, rather than hyperbolic, func-
tions, so that

N, = {— (12}:%2 (Si’g k)2 ( (k’:j );_1 1))" / sin (i ((few)? — 1)%)} +O(L-Y). (B4b)

(B 4) displays the importance of both the criterion (2.5) and the obstacle length
L in determining the behaviour of the matrix in (B 2). The matrix becomes more
nearly singular as L increases (and ;, vanishes) only if [k] > [kw)].

Following appendix A, one would like to show that the matrix in (B 2) has an
inverse which is defined by a Neumann series, similar to (A 6). From that result
one could then deduce that C; = f;/N,;.

When [k] > [kw] and L is large, however, so that the matrix is nearly singular,
it is not obvious that any such representation exists. Hence, we turn to the
following suggestive line of reasoning, which does not constitute a proof.

Consider first the truncated set of equations, obtained from those in (B 2) by
setting N, = Oforn > 1:

My, My, Ny | A, B fs
My; My, Ny\d4d:] =\/fe
My, M, N,/ \C; fi

This set of equations is equivalent to the following set:

M33 M32 ‘Z‘z—31 A3 f 3
My M,, M, 4,1 =\ ) (B 5)
My My, im (71 N1
in which 0, = (2/n) N, 0y, and M, = 37 N,/ N;,.
But (B 5) is almost exactly (2.7) with [k] = [kw]. Certainly a Neumann series
exists for the inverse of this matrix, so that

Gy = @m)fy or Cp=fi/Ny. (B6a)
Further, A, = f./ M. (B6b)
(Note that the result, (B 6a), does not depend on the value of [kw].)

Consider next a different truncation of (B 2), obtained by setting N, = 0 for
n,m>1and M,,=0form=1,n>1:

Nll N12 N13 or 01 fl
‘2”21 M22 M‘23 v BZ = f2

M31 M32 '.2”33 .o ?33 .).‘.3

I2 FLM 48
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These equations, in turn, can be rewritten as

im Mlz Mla G fl
My My, My, ... B\ = | /s ,

M31 M32 M33 ce B3 f3

where fy = 3mf,/N;, and M, = 4 Ny, /Ny,
Again, this set is almost exactly (2.7) with [k] = [kw], except that f; might be
much larger here (if &, is very small). Again, a Neumann series exists, and

G = (2/77)f1 or () = fi/N,. (B6a)
If N = 0(1), B, =f./M,.; (B 6¢)
if Ny =oL™M), B,=O0WN;™). (B 6d)

Thus, one obtains the result (B 6) for N,, =0 if m,n > 1 in (B2). But, from
(B 3) to (B 4), one notes that the actual values of these N, are small:

Non 1 . )
—Nu = O(Z——( > n2)) if m<+n;
2 = O(—l ) if n>1
N, Ln? )

Certainly for L large enough, then, one could obtain yet another Neumann series
for the matrix £ in (B 2):

E-t=EJ\I-E,E*+E,ET'E,E7...),

where E, comprises all of the elements of both truncated matrices considered
above, and E, comprises all of the elements of the matrix in (B 2) which were
ignored in both truncations.

Algebraic complications preclude one’s obtaining a close enough bound on E,
to prove this result by the methods used above. Proving it would prove not
only (B 7); it would prove as well Drazin & Moore’s claim that solutions always
exist for rectangular obstacles, and confirm the conjecture mentioned above that,
for a barrier which reflects almost all the energy from its wave-generator, the
wave-pattern downstream is quite intense.

It follows that (B 6) is a first approximation to the full solution of (B 2). Com-
bining this result with (B 4) and dropping the restriction [£] = 1, one obtains the
desired result:

if [k} =kw], C,=0(1) as L->o0;
if [k] > [kw], ord(C,)>L as L->o0. (B7)

This establishes (3.1).
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